Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(4): e62279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638023

RESUMO

Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush) ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus). Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2) per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2) per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.


Assuntos
Mudança Climática , Ecossistema , Peixes/fisiologia , Geografia , Temperatura , Animais , Lagos , América do Norte , Estações do Ano
2.
Ecol Appl ; 22(3): 817-27, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22645813

RESUMO

Invasive species can have severe effects on aquatic ecosystems. After invasions occur, eradication should be considered whenever the potential loss of ecosystem services outweighs the cost of the eradication method. Here we evaluate the possibility of destratifying Crystal Lake, Wisconsin, USA, to eradicate the invasive fish rainbow smelt (Osmerus mordax). We modeled the effects of three destratification scenarios (non-, low-, and high-mixing) using both physical and biological models. Field observations were used to calibrate the models. Water temperatures estimated from 18 unique DYRESM simulations were used in a bioenergetics model to estimate growth of five age classes of rainbow smelt under normal and destratified conditions. Our simulations indicate that destratification can eliminate optimal rainbow smelt thermal habitat resulting in mortality. Destratified lake temperatures also surpassed several physiological critical temperatures. Bioenergetics simulations predicted a weight loss of 45-55% in yearling and adult rainbow smelt. We found that destratification is potentially effective for eradicating cold-water species in temperate lakes.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Peixes/classificação , Peixes/fisiologia , Espécies Introduzidas , Lagos , Animais , Temperatura Baixa , Dinâmica Populacional , Temperatura , Fatores de Tempo
3.
Ecol Lett ; 14(12): 1288-99, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21985428

RESUMO

Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management.


Assuntos
Ecologia/métodos , Pesqueiros , Peixes , Modelos Biológicos , Comportamento Predatório , Animais , Ecossistema , Oceanos e Mares
4.
Ambio ; 36(2-3): 265-71, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17520943

RESUMO

Based on an earlier published ecosystem model, we have explored possible effects of different management scenarios for the Baltic Sea. The scenarios include an oligotrophication of the system, a drastic increase in the number of seals, and changes in the fishery management. From these simulations we conclude that fisheries, seals, and eutrophication all have strong and interacting impacts on the ecosystem. These interactions call for integrated management. The modeling highlights the potential for conflicts among management mandates such as flourishing fisheries, rebuilt seal populations, and substantially reduced eutrophication. The results also suggest that fisheries management reference points have to be adjusted in response to changes in the presence of natural predators or ecosystem productivity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros/métodos , Cadeia Alimentar , Gestão de Riscos/métodos , Animais , Países Bálticos , Eutrofização , Pesqueiros/economia , Modelos Biológicos , Oceanos e Mares , Gestão de Riscos/economia
5.
Nature ; 427(6971): 240-3, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14724637

RESUMO

Ecosystems are supported by organic carbon from two distinct sources. Endogenous carbon is produced by photosynthesis within an ecosystem by autotrophic organisms. Exogenous carbon is produced elsewhere and transported into ecosystems. Consumers may use exogenous carbon with consequent influences on population dynamics, predator-prey relationships and ecosystem processes. For example, exogenous inputs provide resources that may enhance consumer abundance beyond levels supported by within-system primary production. Exogenous fluxes of organic carbon to ecosystems are often large, but this material is recalcitrant and difficult to assimilate, in contrast to endogenously produced organic matter, which is used more easily. Here we show, by the experimental manipulation of dissolved inorganic (13)C in two lakes, that internal primary production is insufficient to support the food webs of these ecosystems. Additions of NaH(13)CO(3) enriched the (13)C content of dissolved inorganic carbon, particulate organic carbon, zooplankton and fish. Dynamics of (13)C indicate that 40-55% of particulate organic carbon and 22-50% of zooplankton carbon are derived from terrestrial sources, showing that there is significant subsidy of these ecosystems by organic carbon produced outside their boundaries.


Assuntos
Carbono/metabolismo , Daphnia/metabolismo , Cadeia Alimentar , Água Doce/parasitologia , Animais , Isótopos de Carbono , Peixes/metabolismo , Água Doce/química , Michigan , Zooplâncton/metabolismo
6.
Oecologia ; 110(4): 592-600, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-28307255

RESUMO

Individual foraging specializations are an important source of intraspecific variability in feeding strategies, but little is known about what ecological factors affect their intensity or development. We evaluated stomach contents in marked individual largemouth bass (Micropterus salmoides) and tested the hypothesis that diet specialization is most pronounced during periods with high conspecific densities. We collected diet data over 10 years from an unexploited population of largemouth bass that displayed a greater than threefold variation in density. Although diet composition of the aggregate bass population did not change during the study, bass body condition was inversely correlated with population size. Individual marked bass exhibited high diet consistency (diet overlap between successive captures) during years with high population densities. Diet overlap between randomly assigned pairs of bass was not correlated with population size. We did not detect the expected positive relationship between diet breadth and population size. Our analyses demonstrate that population responses to density changes may represent the sum of many unique individual foraging responses and would be obscured by pooled sampling programs. Behavioral flexibility of individuals may contribute to the ability of largemouth bass to function as a keystone predator in many aquatic communities.

7.
Oecologia ; 97(1): 49-61, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28313589

RESUMO

We studied size-structured predator-prey interactions between blue crabs (Callinectes sapidus) and marsh periwinkles (Littoraria irrorata) with a combination of field studies, laboratory experiments and individual-based modeling. Size distributions of Littoraria differed among years at the same sites in a salt marsh and could largely be explained by dominance of strong cohorts in the population. At a given site, abundance increased with elevation above tidal datum. Size-selective predation by blue crabs does not appear to be an important regulator of snail size distributions but may have a major effect on local abundance. Laboratory studies indicated that predator-prey interactions between Callinectes and Littoraria are strongly size-dependent. Crabs were generally effective at feeding on periwinkles at size ratios greater than approximately 6 (crab width: snail length). At lower size ratios crabs were far less effective at manipulating the snails, which often survived but with damaged shells. An individual-based model which incorporated information about incidence of snail shell scarring (resulting from non-lethal interactions) and snail density, predicted reduced predation rates and smaller average crab size with distance from the low tide refugium for crabs.

8.
Oecologia ; 62(1): 13-17, 1984 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28310731

RESUMO

Predation by naticid gastropods shows evidence of adaptation to maximize the rate of energy intake. The predation rate of Polinices duplicatus feeding on artificially altered, thin-shelled Mercenaria mercenaria was faster than the predation rate on normal Mercenaria. The rate of energy intake was limited by handling time. The time saved by predation on thin-shelled prey was used to forage. Thus time was shown to be valuable to P. duplicatus, and cost-benefit functions using time and energy as currencies are appropriate for estimating dietary efficiency and predicting prey choice.Despite the clear superiority of thin-shelled prey, P. duplicatus did not learn to prefer this novel prey type, suggesting that predator choices are sterotyped, reflecting optima selected over evolutionary time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...